
ESR Consortium
KF-1.4

Trusted Execution Environment
Kernel & Features

Profile Specification
ESR0020

Reference: ESR-SPE-0020-KF
Version: 1.4
Rev: F

Copyright of The Software

DEFINITIONS

"ESR" means the Specification, including any modifications and upgrades, where these terms have
been stated or referred to, and made available to You by ESR Consortium, including without
limitation, texts, drawing, codes,and examples.

"ESR Consortium" means the non-profit entity, registered in France in accordance with the French
law of 1901.

"You" means the legal entity or entities represented by the individual executing this Agreement.

READ ONLY RIGHTS

Subject to the terms and conditions contained herein, ESR Consortium grants to You a non-
exclusive, non-transferable, worldwide, and royalty-free license to view and read the ESR solely
for purposes of Your internal evaluation. As a condition of the license grant, You shall not copy,
modify, create derivative works of, publicly display, publicly perform, implement, disclose,
distribute, or otherwise use the ESR, including without limitation, using the ESR to develop
Software or Tool, similar or compatible with the software defined by the Specification.

INTELLECTUAL PROPERTY

The ESR is proprietary, protected under copyright law and patents. You have no right at any time
to disclose, directly or indirectly, such material and/or information relating to the ESR, to any third
party without ESR consortium's prior written approval.

GENERAL TERMS

THE ESR IS PROVIDED "AS IS", WITHOUT WARRANTIES OF ANY KIND, EITHER
EXPRESS OR IMPLIED.

THE READING OF THE ESR AND ALL CONSEQUENCES ARISING THEREOF IS YOUR
SOLE RESPONSIBILITY. ESR CONSORTIUM SHALL NOT BE LIABLE TO YOU FOR ANY
LOSS OR DAMAGE CAUSED BY, ARISING FROM, DIRECTLY OR INDIRECTLY, OR IN
CONNECTION WITH THE ESR.

MISCELLANEOUS

This Agreement shall be governed by, and interpreted in accordance with French Law. In no event
shall this Agreement be construed against the drafter.

This Agreement contains the entire understanding between the parties concerning its subject matter
and supersedes any other agreement or understanding, whether written or oral, which may exist or
have existed between the parties on the subject matter hereof.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR
TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE
INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION.

ESR CONSORTIUM MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE
PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN ANY ESR PUBLICATION AT
ANY TIME.

Trademarks
Java™ is Sun Microsystems' trademark for a technology for developing application software and
deploying it in cross-platform, networked environments. When it is used in this documentation

without adding the ™ symbol, it includes implementations of the technology by companies other
than Sun.

Java™,all Java-based marks and all related logos are trademarks or registered trademarks of Sun
Microsystems Inc, in the United States and other Countries.

Information in this document is the property of ESR Consortium. Without written permission from
ESR Consortium, copying or sending parts of the document or the entire document by any means
to third parties is not permitted including any means such as electronic communication,
photocopies, mechanical reproduction systems or by any means dealing with information
processing.

ESR0020 - KF 1.4 (KERNEL & FEATURES)

Contents
1 Preface to KF Profile, ESR020..1

1.1 Who should use this specification?..1

1.2 Comments...1

1.3 Requirements..1

1.4 Related Literature..1

1.5 Document Conventions..2

1.6 Implementation Notes..2
2 Introduction...2

2.1 Basic Concepts..2

2.2 First Example...2
2.2.1 Kernel class..3
2.2.2 Feature class...3
2.2.3 Expected Output...4

3 Ownership Rules...4
3.1 Type...4

3.2 Object..4

3.3 Execution Context..4

3.4 Kernel Mode...4
4 Execution Rules...5

4.1 Type References..5

4.2 Method References...5

4.3 Field References..5
4.3.1 Instance Field References...5
4.3.2 Static Field References...5
4.3.3 Context Local Static Field References...5

4.4 Object References...6

4.5 Local References...6

4.6 Monitor Access..6

4.7 Native Method Declaration..6

4.8 Reflective Operations...6
4.8.1 Class.forName..6
4.8.2 Class.newInstance..7
4.8.3 Class.getResourceAsStream...7
4.8.4 Thread.currentThread...8

5 Feature Lifecycle...8
5.1 Entry point..8

5.2 States...8

5.3 Installation..9

5.4 Start...9

5.5 Stop..10

5.6 Deinstallation..10
6 Class Spaces..11

IV

ESR0020 - KF 1.4 (KERNEL & FEATURES)

6.1 Overview...11

6.2 Private Types...11

6.3 Kernel API Types..11

6.4 Precedence Rules..12
7 Resource Control Manager..12

7.1 CPU Control: Quotas...12

7.2 RAM Control: Feature Criticality..12

7.3 Time-out Control: Watchdog...12

7.4 Native Resource Control: Security Manager...13
8 Communication Between Features..13

8.1 Introduction..13

8.2 Shared Interface Declaration..14

8.3 Proxy Class..14

8.4 Object Binding..15

8.5 Arguments Transfer...15

8.6 Kernel Type Converters...15
9 Configuration Files..16

9.1 Kernel and Features Declaration..16

9.2 Kernel API Definition..16

9.3 Identification...18

9.4 Shared Interface Declaration..19

9.5 Kernel Advanced Configuration...19

9.6 Context Local Storage Static Field Configuration...19
9.6.1 XML Schema & Format...19
9.6.2 Typical Example...20

10 Java Specification..21

V

ESR0020 - KF 1.4 (KERNEL & FEATURES)

Tables
Table 4-1: Class.forName(...) access rules..7
Table 4-2: Class.newInstance(...) access rules...7
Table 4-3: Class.getResourceAsStream(...) access rules...8
Table 8-1 Shared Interface Argument Conversion Rules...15
Table 9-1: Context Local Storage XML Schema Specification...20

VI

ESR0020 - KF 1.4 (KERNEL & FEATURES)

Illustrations
Illustration 2-1: Kernel Hello World Example...3
Illustration 2-2: Feature Hello World Example..3
Illustration 4-1: Context Local Storage Declaration of a Static Field..6
Illustration 4-2: Context Local Storage Declaration of a Static Field with an Initialization Method 6
Illustration 5-1: Feature State Diagram...9
Illustration 6-1: Kernel & Features Class Spaces Overview..11
Illustration 6-2: Kernel API Example for exposing System.out.println...12
Illustration 8-1: Shared Interface Declaration Example..14
Illustration 8-2: Proxy Method Implementation Template...14
Illustration 9-1: KF Definition File Properties Specification..16
Illustration 9-2: Kernel API XML Schema..17
Illustration 9-3: Kernel API Tags Specification...18
Illustration 9-4: Shared Interface XML Schema Specification..19
Illustration 9-5: Kernel Intern Root XML Schema Specification..19
Illustration 9-6: Context Local Storage of Static Field Example...20
Illustration 9-7: Context Local Storage Example of Initialization Sequence...................................21

VII

ESR0020 - KF 1.4 (KERNEL & FEATURES)

1 PREFACE TO KF PROFILE, ESR020

This document defines the KF profile, a Trusted Execution Environment (TEE) targeting Java
virtual machines.

1.1 Who should use this specification?
This specification is targeted at the following audiences:

• Implementors of the KF specification.

• Application developers that target Java applications with the need of embedding third party
software components that may be untrusted.

• Java virtual machine providers.

1.2 Comments
Your comments about KF are welcome. Please send them by email to comments@e-s-r.net,
with KF as subject.

1.3 Requirements
The term MUST indicates that the associated item is an absolute requirement.

The term MAY indicates that the associated item is optional.

The term SHOULD indicates that the associated item is highly recommended, but not required.

Although this specification defines minimal requirements, devices with more resources may also
benefit from KF specification, especially when users are concerned with optimal resource usage.

The KF specification makes no hardware requirement for devices that run a Java virtual machine
that implements this specification. Typical hardware for KF ranges from low-end 32-bit (such as
Cortex-M0) to 64-bit multi-core cpu.

The KF profile specification makes minimal assumptions about the system software of the device.
Although a Java virtual machine is required, the Kernel does not need to support an OS/RTOS
while the virtual machine may be baremetal (i.e. the device boots directly in Java).

Compliant KF 1.4 implementations MUST include all packages, classes, and interfaces described
in this specification, and implement the associated behavior.

1.4 Related Literature
JVM2: Tim Lindholm & Frank Yellin, The Java™ Virtual Machine Specification, Second Edition,
1999

JLS: James Gosling, Guy Steele, Bill Joy, Gilad Bracha, The Java™ Language Specification, Third
Edition, 2005

OSGI: OSGi Alliance, https://osgi.org/download/r7/osgi.core-7.0.0.pdf, 2018

1/64

https://osgi.org/download/r7/osgi.core-7.0.0.pdf

ESR0020 - KF 1.4 (KERNEL & FEATURES)

1.5 Document Conventions
In this document, references to methods of a Java class are written as
ClassName.methodName(args). This applies to both static and instance methods. Where the
method is static this will be made clear in the accompanying text.

1.6 Implementation Notes
The KF specification does not include any implementation details. KF implementors are free to
use whatever techniques they deem appropriate to implement the specification, with (or without)
collaboration of any Java virtual machine provider. KF experts have taken great care not to
mention any special virtual machines, nor any of their special features, in order to encourage fair
competing implementations. Implementations are free to perform checks either at compile-time
and/or at runtime.

2 INTRODUCTION

This specification defines a Trusted Execution Environment (TEE) for software modules called
Features.

2.1 Basic Concepts
Kernel & Features semantic (KF) allows an application to be split into multiple parts:

• the main application, called the Kernel

• zero or more applications, called Features.

The Kernel is mandatory. It is assumed to be reliable, trusted and cannot be modified. If there is
only one application (i.e. only one main entry point that the system starts with) then this
application is called the Kernel.

A Feature is an application “extension” managed by the Kernel. A Feature is fully controlled by
the Kernel: it can be installed (dynamically or statically pre-installed), started, stopped and
uninstalled at any time independent of the system state (particularly, a Feature never depends on
another Feature to be stopped). A Feature is optional, potentially not-trusted, maybe unreliable and
can be executed without jeopardizing the safety of the Kernel execution and other Features.

Resources accesses (RAM, hardware peripherals, CPU time, …) are under control of the Kernel.

2.2 First Example
This simple example illustrates a log of a message called by a Kernel and a Feature . The
KernelExample class is the main Kernel entry point. The FeatureExample class is a Feature
entry point. The way these classes are assigned to contexts and how the Feature is installed is not
described here. (the Feature is assumed to be installed before the Kernel main method starts).

2/64

ESR0020 - KF 1.4 (KERNEL & FEATURES)

2.2.1 Kernel class

package ej.kf.example.helloworld;

import ej.kf.Feature;
import ej.kf.Kernel;

/**
 * Defines a Kernel class. The Kernel entry point is the regular main method.
 */
public class KernelExample {

public static void main(String[] args) throws Exception {
log("Hello World !");
for (Feature f : Kernel.getAllLoadedFeatures()) {

f.start();
}

}

/**
 * Log a message, prefixed with the name of the caller
 */
public static void log(String message) {

String name = Kernel.getContextOwner().getName();
System.out.println('[' + name + "]: " + message);

}

}

Illustration 2-1: Kernel Hello World Example

2.2.2 Feature class

package ej.kf.example.helloworld;

import ej.kf.FeatureEntryPoint;

/**
 * Defines a Feature class that implements {@link FeatureEntryPoint}
interface.
 */
public class FeatureExample implements FeatureEntryPoint {

@Override
public void start() {

KernelExample.log("Hello World !");
}

@Override
public void stop() {
}

}

Illustration 2-2: Feature Hello World Example

3/64

ESR0020 - KF 1.4 (KERNEL & FEATURES)

2.2.3 Expected Output
[KERNEL]: Hello World !
[FEATURE]: Hello World !

3 OWNERSHIP RULES

At runtime, each type, object and thread execution context has an owner. This section defines
ownership transmission and propagation rules.

3.1 Type
The owner of a type is fixed when such type is loaded and that owner cannot be modified after.

The owner of an array-of-type type is the owner of the type. Array of basetypes are lazily loaded.
Those that are required by the Kernel are owned by the Kernel. Other arrays are loaded in any
Feature that require them.

The owner of a type can be retrieved by calling Kernel.getOwner(Object) with the Class
instance.

3.2 Object
When an object is created, it is assigned to the owner of the execution context owner.

The owner of an object can be retrieved by calling Kernel.getOwner(Object) with the given
object.

3.3 Execution Context
When a thread is started, the first execution context is set to the owner of the thread object. When
a method is called from Kernel mode (§3.4) and its receiver is owned by a Feature, the execution
context is set to the owner of the receiver. In all other cases, the execution context of the method
called is the execution context of the caller.

The owner of the current execution context can be retrieved by calling
Kernel.getContextOwner().

When a method returns, the execution context owner of the caller remains the one it was before the
call was done.

The Kernel is the first application to run, and it is triggered by the system when it boots. The
Kernel starts in Kernel mode, creating a first thread owned by the Kernel.

The Kernel can execute a dynamic piece of code (java.lang.Runnable) in a Feature context by
calling Kernel.runUnderContext().

3.4 Kernel Mode
An execution context is said to be in Kernel mode when the current execution context is owned by
the Kernel. The method Kernel.enter() sets the current execution context owner to the Kernel.
The method Kernel.exit() resets the current execution context owner to the one when the
method Kernel.enter() was called.

4/64

ESR0020 - KF 1.4 (KERNEL & FEATURES)

4 EXECUTION RULES

Notes: this specification does not force all rules to be checked at runtime. When a rule is checked
at runtime, a java.lang.IllegalAccessError must be thrown at the execution point where
the rule is broken.

4.1 Type References
A type owned by the Kernel cannot refer to a type owned by a Feature.

A type owned by a Feature can refer to a type owned by the Kernel if and only if it has been
exposed as an API type.

A type owned by a Feature cannot refer to a type owned by another Feature.

All the types of the KF library (package ej.kf.*) are owned by the Kernel. A type owned by a
Feature cannot access any types of this library except the ej.kf.FeatureEntryPoint interface
and the ej.kf.Proxy class.

4.2 Method References
A type owned by a Feature can refererence a method of type owned by the Kernel if and only if it
has been exposed as an API method.

4.3 Field References

4.3.1 Instance Field References

A type owned by a Feature can refer to all instance fields of a type owned by the Kernel, if and
only if the type has been exposed as an API type and the field is accessible according to [JLS]
access control rules.

4.3.2 Static Field References

A type owned by a Feature can refer to a static field of a type owned by the Kernel if and only if it
has been exposed as an API static field.

A static field of a type owned by a Feature cannot refer to an object owned by another Feature.

An object owned by a Feature can be assigned to a static field of a type owned by the Kernel if and
only if the current execution context is in Kernel mode (§3.4), otherwise a
java.lang.IllegalAccessError is thrown at runtime.

4.3.3 Context Local Static Field References

By default, a static field holding an object reference is stored in a single memory slot in the context
of the owner of the type that defines the field.

The Kernel can declare a static field as a context local storage field in kernel.intern file
(Section §9.6.1 for full format specification). A memory slot is then allocated for the Kernel and
duplicated for each Feature. As it is a static field, it is initialized to null.

5/64

ESR0020 - KF 1.4 (KERNEL & FEATURES)

<kernel>
<contextLocalStorage name="com.mycompany.MyType.MY_GLOBAL"/>

</kernel>

Illustration 4-1: Context Local Storage Declaration of a Static Field

The Kernel can declare an optional initialization method. This method is automatically invoked
when the field is being read if its content is null. This gives a hook to lazily initialize the static
field before its first read access. If the initialization method returns a null reference, a
java.lang.NullPointerException is thrown.

<kernel>
<contextLocalStorage

name="com.mycompany.MyType.MY_GLOBAL"
initMethod="com.mycompany.MyType.myInit()java.lang.Object"

/>
</kernel>

Illustration 4-2: Context Local Storage Declaration of a Static Field with an Initialization
Method

4.4 Object References
An object owned by a Feature cannot be assigned to an object owned by another Feature.

An object owned by a Feature can be assigned to an object owned by the Kernel if and only if the
current execution context is in Kernel mode.

Note that all possible object assignments are included (field assignment, array assignment and
array copies using System.arraycopy()).

4.5 Local References
An object owned by a Feature cannot be assigned into a local of an execution context owned by
another Feature.

An object owned by a Feature can be assigned into a local of an execution context owned by the
Kernel. When leaving Kernel mode explicitly with Kernel.exit(), all locals that refer to an
object owned by another Feature are set to null.

4.6 Monitor Access
A method owned by a Feature cannot synchronize on an object owned by the Kernel.

4.7 Native Method Declaration
A class owned by a Feature cannot declare a native method.

4.8 Reflective Operations

4.8.1 Class.forName

Table 4-1 defines the semantic rules for java.lang.Class.forName(String) in addition to
[JLS] specification. If it is not allowed by this specification, a
java.lang.ClassNotFoundException is thrown as specified by [JLS].

6/64

ESR0020 - KF 1.4 (KERNEL & FEATURES)

Context Owner Code Owner Type Owner Class.forName(Type) allowed

K K K true

K K F false

K F K N/A

K F F N/A

F K K true

Fi K Fj i==j

F F K true if the type has been type has been
exposed as an API type (§), false
otherwise.

Fi Fi Fj i==j

Table 4-1: Class.forName(...) access rules

4.8.2 Class.newInstance

Table 4-2 defines the semantic rules for java.lang.Class.newInstance(Class) in addition
to [JLS] specification.

Context Owner Code Owner Class Owner New instance ownwer

K K K K

K K F F

K F K N/A

K F F N/A

F K K F

F K F F

F F K F

F F F F

Table 4-2: Class.newInstance(...) access rules

4.8.3 Class.getResourceAsStream

Table 4-3 defines the semantic rules for java.lang.Class.getResourceAsStream(String)
in addition to [JLS] specification. If it is not allowed by this specification, null is returned as
specified by [JLS].

7/64

ESR0020 - KF 1.4 (KERNEL & FEATURES)

Context owner Code owner Resource owner Class.getResourceAsStream(String)
allowed

K K K true

K K F false

K F K N/A

K F F N/A

F K K true

Fi K Fj i==j

If the same resource name is declared
by both the Kernel and the Feature, the
Feature resource takes precedence over

the Kernel resource.

F F K false

Fi Fi Fj i==j

Table 4-3: Class.getResourceAsStream(...) access rules

4.8.4 Thread.currentThread

Threads and their execution contexts have owners. The Thread.currentThread() method
relates to the thread's owner that is executing the current execution context only. There is no
obligation that two execution contexts that are in a caller-callee relationship have the same (==)
returned java.lang.Thread object when using Thread.currentThread() method.

If the Thread that initiated the execution has the same owner as the current execution context or if
execution is in Kernel mode, then the thread that initiates the execution is returned, otherwise, a
java.lang.Thread object owned by the Kernel is returned.

5 FEATURE LIFECYCLE

5.1 Entry point
Each Feature MUST define an implementation of the ej.kf.FeatureEntryPoint.
FeatureEntryPoint.start() method is called when the Feature is started. It is considered to
be the main method of the Feature application. FeatureEntryPoint.stop() method is called
when the Feature is stopped. It gives a chance to the Feature to terminate properly.

5.2 States
A Feature is in one of the following states:

• INSTALLED: Feature has been successfully linked to the Kernel and is not running. There
are no references from the Kernel to objects owned by this Feature.

• STARTED: Feature has been started and is running.

• STOPPED: Feature has been stopped and all its owned threads and execution contexts are
terminated. The memory and resources are not yet reclaimed. See (§) for the complete stop
sequence.

8/64

ESR0020 - KF 1.4 (KERNEL & FEATURES)

• UNINSTALLED: Feature has been unlinked from the Kernel.

Illustration 5-1 describes the Feature state diagram and the methods that changes Feature's state.

5.3 Installation
A Feature is installed by the Kernel using Kernel.install(InputStream). The content of the
Feature data to be loaded is implementation dependent. The Feature data is read and linked to the
Kernel. If the Feature cannot be linked to the Kernel, an
ej.kf.IncompatibleFeatureException is thrown. Otherwise, the Feature is added to the list
of loaded Features and its state is set to INSTALLED.

5.4 Start
A Feature is started by the Kernel using Feature.start(). The Feature is switched in the
STARTED state. A new thread owned by the Feature is created and started. Next steps are
executed by the newly created thread:

• Feature clinits are executed

• Entrypoint is instanciated

• FeatureEntryPoint.start() is called

9/64

Illustration 5-1: Feature State Diagram

ESR0020 - KF 1.4 (KERNEL & FEATURES)

5.5 Stop
A Feature is stopped explicitly by the Kernel using Feature.stop(). Features may be stopped
implicitly by the Resource Control Manager. Next steps are executed:

• On explicit Feature.stop() call, a new thread owned by the Feature is created and
FeatureEntryPoint.stop() is executed within this new thread. Wait until this new
thread is done, and timeout of a global timeout stop-time occurred1.

• The Feature state is set to STOPPED.

• Marks all objects owned by the Feature as dead objects, which implies that a
ej.kf.DeadFeatureException is thrown in threads that are running the stopped Feature
code or in threads that want to call stopped Feature code, or threads that accesses to objects
owned by the stopped Feature.

• All execution contexts, from any thread, owned by the Feature are cleared.

• All objects owned by the Feature have their references (to other objects) set to null.

• The alive2 threads owned by the Feature are promoted to java.lang.Thread objects
owned by the Kernel.

• Native resources (files, sockets, …) opened by the Feature3 that remain opened after
FeatureEntryPoint.stop() execution are closed abruptly.

• FeatureStateListener.stateChanged(...) is called for each registered listener.

• If there are no remaining alive objects4:

• Feature state is set to INSTALLED,

• FeatureStateListener.stateChanged(...) is called for each registered listener.

The method Feature.stop() can be called several times, until the Feature is INSTALLED.

5.6 Deinstallation
A Feature is uninstalled by the Kernel using Kernel.uninstall(). The Feature code is unlinked
from the Kernel and reclaimed. The Feature is removed from the list of loaded Features and its
state is set to UNINSTALLED. The Feature does not exist anymore in the system.

1 A decent global timeout stop-time is 2,000ms.
2 An alive thread is a thread in which at least one execution context is alive.
3 The Kernel MUST track (native) resources that the Kernel granted access for the Feature. See Native

resources control section.
4 If there are remaining alive Feature objects after the Kernel listeners are called, the Feature stays in the

STOPPED state forever (the Kernel has an issue)

10/64

ESR0020 - KF 1.4 (KERNEL & FEATURES)

6 CLASS SPACES

6.1 Overview

6.2 Private Types

The Kernel and the Features define their own private name space. Internal types are only
accessible from within the Kernel or Features that define these types. The Kernel or a Feature can
have only one type for a specific fully qualified name, insuring there are not two types in the
Kernel or in a Feature sharing the same fully qualified name.

6.3 Kernel API Types
The Kernel can expose some of its types, methods and static fields as API to Features. A file
describes the list of the types, the methods and the static fields that Features can refer to.

Here is an example for exposing System.out.println(String) to a Feature:

11/64

Illustration 6-1: Kernel & Features Class Spaces Overview

ESR0020 - KF 1.4 (KERNEL & FEATURES)

<require>

<field name="java.lang.System.out"/>
<method name="java.io.PrintStream.println(java.lang.String)void"/>

</require>

Illustration 6-2: Kernel API Example for exposing System.out.println

Section 9.2 describes the Kernel API file format.

6.4 Precedence Rules
APIs exposed by the Kernel are publicly available for all Features: they form the global name
space.

A Kernel API type (from the global name space) always takes precedence over a Feature type with
the same fully qualified name when a Feature is loaded5.

7 RESOURCE CONTROL MANAGER

7.1 CPU Control: Quotas
A Kernel can assign an execution quota to a Feature using Feature.setExecutionQuota().
The quota is expressed in execution units.

Quotas account to the running current context owner.

When a Feature has reached its execution quota, its execution is suspended until all other Features
have reached their execution quota. When there are no threads owned by Features eligible to be
scheduled, the execution counter of all Features is reset.

Setting a Feature execution quota to zero causes the Feature to be suspended (the Feature is
paused).

7.2 RAM Control: Feature Criticality
Each Feature has a criticality level between Feature.MIN_CRITICALITY and
Feature.MAX_CRITICALITY. When an execution context cannot allocate new objects because a
memory limit has been reached, Features shall be stopped following next semantic:

• Select the Feature with the lowest criticality.

• If the selected Feature has a criticality lower than the current execution context owner
criticality, then stop the selected Feature and all the Features with the same criticality.

• If no memory is available, repeat these two previous steps in sequence until there are no
more Features to stop.

If no memory is reclaimed, then an OutOfMemoryException is thrown.

7.3 Time-out Control: Watchdog
All method calls that are done from a Kernel mode to a Feature mode are automatically executed
under the control of a watchdog.

5 An exposed type from the Kernel cannot be overloaded by a Feature.

12/64

ESR0020 - KF 1.4 (KERNEL & FEATURES)

The watchdog timeout is set according to the following rules:

• use the watchdog timeout of the current execution context if it has been set,

• else use the watchdog timeout of the current thread if it has been set,

• else use the global system watchdog timeout.

The global system watchdog timeout value is set to Long.MAX_VALUE at system startup.

When the watchdog timeout occurs the offending Feature is stopped.

7.4 Native Resource Control: Security Manager
The Kernel is responsible for holding all the native calls. The Kernel shall provide methods (API)
that systematically check, using the standard security manager, that the access to a native call is
granted to the specific Feature.

When an object owned by a Feature is not allowed to access a native resource, a specific exception
shall be thrown.

Any native resource opened by a Feature must be registered by the Kernel and closed when the
Feature is stopped.

8 COMMUNICATION BETWEEN FEATURES

8.1 Introduction
A Feature can communicate with another Feature, through a remote method invocation mechanism
based on pure Java interfaces.

A Feature can call a method owned by another Feature, provided:

• Both Features own an interface in their class space with the same fully qualified name

• Both Features have declared such interface as a shared interface

• The source Feature has declared a Proxy class for its shared interface

• The target Feature has registered to the Kernel an instance of a class implementing its shared
interface

• The source Feature has requested from the Kernel an instance of a class implementing its
interface

• The Kernel has bound the source interface to the target instance and returned an instance to
the source Feature, implementing its shared interface

• The source Feature calls a method declared in the shared interface using this instance as
receiver

• A method with the exact descriptor exists in the target Feature interface

• The arguments given by the source Feature can be transferred to the target Feature

• The value returned by the target Feature can be transferred to the source Feature (if the
method does not return void)

13/64

ESR0020 - KF 1.4 (KERNEL & FEATURES)

8.2 Shared Interface Declaration
To declare an interface as a shared interface, it must be registered in a shared interfaces file, as
following:

<sharedInterfaces>
<sharedInterface name="mypackage.MyInterface"/>

</sharedInterfaces>

Illustration 8-1: Shared Interface Declaration Example

Section 9.4 describes the Shared Interface file format specification.

An interface declared as Shared Interface can extends Feature interfaces (which are not declared as
Shared Interfaces) or Kernel interfaces.

A Shared Interface is composed of all methods declared by itself and its super types. Each method
must comply with the following:

• types declared for parameters and optional return value must be transferable types (see
section 8.5)

• exceptions thrown must be owned by the Kernel

8.3 Proxy Class
In addition to the Shared Interface declaration, a Proxy class must be implemented, with the
following specification:

• its fully qualified name is the shared interface fully qualified name append with Proxy.

• it extends ej.kf.Proxy

• it implements the Shared Interface

• it provides an implementation of all interface methods

As the Proxy is implemented by the Feature that will use the Shared Interface, it is free to
implement the desired behavior and ensure its own robustness. Although it is not part of this
specification, it is strongly encouraged that Proxy methods implementation comply with the
expected behavior, even when the remote Feature returns an unexpected behavior (such as
ej.kf.DeadFeatureException if the remote Feature is killed).

Usually, the following template is applied:

try {
 return invokeXXX();
} catch (Throwable e) {
 // Implement a behavior that complies with the method specification.
 // i.e. return a valid error code or throw a documented exception.
 // Logging traces for debug can also be added here.
}

Illustration 8-2: Proxy Method Implementation Template

The ej.kf.Proxy.invokeXXX() method invokes the target method corresponding to the
enclosing proxy method. There is one invokeXXX method for each returned type
(invokeBoolean, invokeByte, invokeChar, invokeShort, invokeInt, invokeLong,
invokeFloat, invokeDouble, invokeRef) and each Proxy method should use the right one
that matches its return type.

14/64

ESR0020 - KF 1.4 (KERNEL & FEATURES)

8.4 Object Binding
The Kernel can bind an object owned by a Feature to an object owned by another Feature using the
method ej.kf.Kernel.bind().

• When the target type is owned by the Kernel, the object is converted using the most accurate
Kernel type converter.

• When the target type is owned by the Feature, it must be a shared interface. In this case, a
Proxy instance is returned. Object identity is preserved across Features: calling
ej.kf.Kernel.bind()multiple times with the same parameters returns the same object.

8.5 Arguments Transfer
A base type argument is directly passed without conversion (by copy).

A reference argument is subject to conversion rules, according to Table 8-1.

Type Owner Instance
Owner

Transfer Rule

Any Class, Array or
Interface

Kernel Kernel Direct reference is passed to the target Feature.

Any Class, Array or
Interface

Kernel Feature Converted to the target Feature if Kernel has
registered a Kernel type converter, otherwise
Forbidden. See section 8.6.

Array of base types Any Feature A new array is allocated in the target Feature and
elements are copied into.

Array of references Any Feature A new array is allocated in the target Feature and
for each element is applied these conversion rules.
(recursively).

Shared Interface Feature Feature A Proxy to the original object is created and
passed to the receiving Feature.

• If argument is already a Proxy and the
target owner is the same than the target
Shared Interface owner, the original object
is passed. (unwrapping)

• Otherwise a new Proxy wrapping on the
original object is passed.

Any Class, Array or
Interface

Feature Feature Forbidden.

Table 8-1 Shared Interface Argument Conversion Rules

8.6 Kernel Type Converters
By default, Feature instances of types owned by the Kernel cannot be be passed across a Shared
Interface method invocation.

15/64

ESR0020 - KF 1.4 (KERNEL & FEATURES)

The Kernel can register a converter for each allowed type, using Kernel.addConverter(). The
converter must implement ej.kf.Converter and can implement one of the following
behaviors:

• by wrapper: manually allocating a Proxy reference by calling Kernel.newProxy()

• by copy: with the help of Kernel.clone()

9 CONFIGURATION FILES

9.1 Kernel and Features Declaration
A Kernel must provide a declaration file named kernel.kf. A Feature must provide a declaration
file named [name].kf.

KF Declaration file is a Properties file. It must appear at the root of any application classpath
(directory or JAR file). Keys are described hereafter:

Key Usage Description

entryPoint Mandatory for
Feature only.

The fully qualified name of the class that implements
ej.kf.FeatureEntryPoint

name Optional KERNEL by default for the Kernel, or the name of the file without
the .kf extension for Features.

version Mandatory String version, that can retrieved using
ej.kf.Module.getVersion()

Illustration 9-1: KF Definition File Properties Specification

9.2 Kernel API Definition
By default, when building a Kernel, no types are exposed as API for Features, except
ej.kf.FeatureEntryPoint. Kernel types, methods and static fields allowed to be accessed by
Features must be declared in one or more kernel.api files. They must appear at the root of any
application classpath (directory or JAR file). Kernel API file is an XML file, with the following
schema:

16/64

ESR0020 - KF 1.4 (KERNEL & FEATURES)

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'>
 <xs:element name='require'>
 <xs:complexType>
 <xs:choice minOccurs='0' maxOccurs='unbounded'>
 <xs:element ref='type'/>
 <xs:element ref='field'/>
 <xs:element ref='method'/>
 </xs:choice>
 </xs:complexType>
 </xs:element>

 <xs:element name='type'>
 <xs:complexType>
 <xs:attribute name='name' type='xs:string' use='required'/>
 </xs:complexType>
 </xs:element>

 <xs:element name='field'>
 <xs:complexType>
 <xs:attribute name='name' type='xs:string' use='required'/>
 </xs:complexType>
 </xs:element>

 <xs:element name='method'>
 <xs:complexType>
 <xs:attribute name='name' type='xs:string' use='required'/>
 </xs:complexType>
 </xs:element>
</xs:schema>

Illustration 9-2: Kernel API XML Schema

17/64

ESR0020 - KF 1.4 (KERNEL & FEATURES)

Tag Attributes Description

require The root element

field Static field declaration. Declaring
a field as a Kernel API
automatically declares its type as a
Kernel API.

name Fully qualified name on the form [type].
[fieldName]

method Method or constructor declaration.
Declaring a method or a
constructor as a Kernel API
automatically declares its type as a
Kernel API

name Fully qualified name on the form [type].
[methodName]
([typeArg1,...,typeArgN)typeReturned.
Types are fully qualified names or one of a base
type as described by the Java language
(boolean, byte, char, short, int, long,
float, double) When declaring a constructor,
methodName is the single type name. When
declaring a void method or a constructor,
typeReturned is void

type Type declaration. Declaring a type
as Kernel API automatically
declares all its super types (classes
and interfaces) and the default
constructor (if any) as Kernel API.

name Fully qualified name on the form [package].
[package].[typeName]

Illustration 9-3: Kernel API Tags Specification

9.3 Identification
Kernel and Features require an X5096 certificate for identification. The 6 first fields defined by
RFC 22537 can be read by calling ej.kf.Module.getProvider().getValue(...).

The certificate file must be configured as following:
• placed beside the related[name].kf file

• named [name].cert

• DER-encoded and may be supplied in binary or printable (Base64) encoding. If the certificate
is provided in Base64 encoding, it must be bounded at the beginning by -----BEGIN
CERTIFICATE-----, and must be bounded at the end by -----END
CERTIFICATE-----.

6 https://tools.ietf.org/html/rfc5280
7:CN (commonName), L (localityName), ST (stateOrProvinceName), O
(organizationName), OU (organizationalUnitName), C (countryName).

18/64

ESR0020 - KF 1.4 (KERNEL & FEATURES)

9.4 Shared Interface Declaration
A Shared Interface file is an XML file ending with the .si suffix with the following format:

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'>

 <xs:element name='sharedInterfaces'>
 <xs:complexType>
 <xs:choice minOccurs='0' maxOccurs='unbounded'>
 <xs:element ref='sharedInterface'/>
 </xs:choice>
 </xs:complexType>
 </xs:element>

 <xs:element name='sharedInterface'>
 <xs:complexType>
 <xs:attribute name='name' type='xs:string' use='required'/>
 </xs:complexType>
 </xs:element>

</xs:schema>

Illustration 9-4: Shared Interface XML Schema Specification

Shared interface files must appear at the root of any application classpath (directory or JAR file).

9.5 Kernel Advanced Configuration
The kernel.intern files is for Kernel advanced configurations such as declaring context local
storage static fields (§4.3.3). It must appear at the root of any application classpath (directory or
JAR file).

 <!--
 Root Element
 -->
 <xs:element name='kernel'>
 <xs:complexType>
 <xs:choice minOccurs='0' maxOccurs='unbounded'>
 <xs:element ref='contextLocalStorage'/>
 <xs:element ref='property'/>
 </xs:choice>
 </xs:complexType>
 </xs:element>

Illustration 9-5: Kernel Intern Root XML Schema Specification

9.6 Context Local Storage Static Field Configuration

9.6.1 XML Schema & Format

19/64

ESR0020 - KF 1.4 (KERNEL & FEATURES)

 <xs:element name='contextLocalStorage'>
 <xs:complexType>
 <!--
 Static Field Simple Name.
 -->
 <xs:attribute name='name' type='xs:string' use='required'/>
 <!--
 Optional Initialization Method descriptor, as specified by Kernel API
method descriptor.
 -->
 <xs:attribute name='initMethod' type='xs:string' use='optional'/>
 </xs:complexType>
 </xs:element>

Table 9-1: Context Local Storage XML Schema Specification

9.6.2 Typical Example

The following illustration describes the definition of a context local storage static field (I), which
is duplicated in each context (Kernel and Features):

Illustration 9-6: Context Local Storage of Static Field Example

The following illustration describes a detailed sequence of method calls with the expected
behavior.

20/64

ESR0020 - KF 1.4 (KERNEL & FEATURES)

Illustration 9-7: Context Local Storage Example of Initialization Sequence

10 JAVA SPECIFICATION

21/64

ESR0020 - KF 1.4 (KERNEL & FEATURES)

Package ej.kf

Contains KF classes.

See:
Description

Interface Summary Page

Converter<T>
A Converter is able to give a representation of an object owned by a Feature to an other
Feature.

25

FeatureEntryPoi
nt

Each Feature shall define one entry point that implements this interface. 32

FeatureStateList
ener

The listener interface for receiving notifications when the state of a Feature has changed. 33

Principal This interface represents and identifies the Kernel or a Feature. 49

UncaughtExcept
ionHandler

Deprecated. Use 55

Class Summary Page

Feature
A Feature represents an optional part of an application that adds new features and
services. 27

Kernel The Kernel represents the atomic part of an application. 36

Module A Module is either Kernel or a Feature. 46

Proxy<T> The superclass of proxy classes. 51

Enum Summary Page

Feature.State A Feature state. 30

Exception Summary Page

AlreadyLoadedF
eatureException

This exception is thrown if a Feature being loaded has already been loaded. 24

DeadFeatureExc
eption

This exception is thrown by the system when a Feature code has been stopped because it
is being uninstalled. 26

IncompatibleFe
atureException

This exception is thrown if a Feature being loaded is not compatible with the current Kernel. 34

InvalidFormatEx
ception

This exception is thrown when a Feature data being loaded has an invalid format. 35

UnknownFeatur
eException

This exception is thrown if a Feature being unloaded is unknown. 56

22/64

file:///l%22b101
file:///l%22b101
file:///l%22b34
file:///l%22b34
file:///l%22b32
file:///l%22b32
file:///l%22b12
file:///l%22b12
file:///l%22b6
file:///l%22b6
file:///l%22b24
file:///l%22b97
file:///l%22b74
file:///l%22b74
file:///l%22b65
file:///l%22b17
file:///l%22b99
file:///l%22b99
file:///l%22b83
file:///l%22b29
file:///l%22b29
file:///l%22b27
file:///l%22b27
file:///l%22b10
file:///l%22b10
file:///l%22b2

ESR0020 - KF 1.4 (KERNEL & FEATURES)

Package ej.kf Description

Contains KF classes. (ESR020).

23/64

Class AlreadyLoadedFeatureException

Class AlreadyLoadedFeatureException

ej.kf

java.lang.Object

 java.lang.Throwable

 java.lang.Exception

 ej.kf.AlreadyLoadedFeatureException

All Implemented Interfaces:
Serializable

public class AlreadyLoadedFeatureException
extends Exception

This exception is thrown if a Feature being loaded has already been loaded.

See Also:
Kernel.load(java.io.InputStream)

Constructor Summary Page

AlreadyLoadedFeatureException(Feature feature)

Creates an AlreadyLoadedFeatureException with the previously loaded Feature.
24

Method Summary Page

FeaturegetFeature()

Returns the previously loaded Feature.
24

Constructor Detail

AlreadyLoadedFeatureException

public AlreadyLoadedFeatureException(Feature feature)

Creates an AlreadyLoadedFeatureException with the previously loaded Feature.

Parameters:
feature - the previously loaded Feature

Method Detail

getFeature

public Feature getFeature()

Returns the previously loaded Feature.

Returns:
the previously loaded Feature.

file:///l%22b17
file:///l%22b17
file:///l%22b17
file:///l%22b17
file:///l%22b17
file:///l%22b6
file:///l%22b17
file:///l%22b17
file:///l%22b5
file:///l%22b17
file:///l%22b17
file:///l%22b6
file:///l%22b17
file:///l%22b4
file:///l%22b36
file:///l%22b3

Interface Converter<T>

Interface Converter<T>

ej.kf

Type Parameters:
T - the Kernel type managed by this Converter.

public interface Converter<T>

A Converter is able to give a representation of an object owned by a Feature to an other Feature. A Converter is
able to convert instances of one and only one Kernel type.

A Converter is free to decide the kind of conversion to apply, depending on the managed type. For example, a
Converter for immutables instances of types such as String will most likely return a copy (clone), wheras a
Converter for instances of types such as InputStream will most likely return a wrapper on the original object.

See Also:
Kernel.bind(Object, Class, Feature), Kernel.clone(Object, Module)

Method Summary Page

Tconvert(T source, Feature targetOwner)

Converts an object owned by a Feature to an other Feature.
25

Class<T>getType()

Gets the Kernel type managed by this Converter.
25

Method Detail

convert

T convert(T source,
 Feature targetOwner)

Converts an object owned by a Feature to an other Feature.

Parameters:
source - the source object to be converted
targetOwner - the owner of the converted object

Returns:
the converted object, owned by the target owner

getType
Class<T> getType()

Gets the Kernel type managed by this Converter.

Returns:
the Kernel type managed by this Converter.

file:///l%22b10
file:///l%22b10
file:///l%22b7
file:///l%22b17
file:///l%22b7
file:///l%22b7
file:///l%22b10
file:///l%22b9
file:///l%22b7
file:///l%22b17
file:///l%22b7
file:///l%22b8
file:///l%22b7
file:///l%22b52
file:///l%22b56
file:///l%22b10
file:///l%22b10
file:///l%22b10
file:///l%22b10
file:///l%22b10
file:///l%22b10
file:///l%22b3

Class DeadFeatureException

Class DeadFeatureException

ej.kf

java.lang.Object

 java.lang.Throwable

 java.lang.Exception

 java.lang.RuntimeException

 ej.kf.DeadFeatureException

All Implemented Interfaces:
Serializable

public class DeadFeatureException
extends RuntimeException

This exception is thrown by the system when a Feature code has been stopped because it is being uninstalled. Only
kernel code can receive this exception: it never occurs in Feature code. Each call from kernel to a Feature shall
catch this exception and handle the fact the Feature is not able to execute the desired "service".

Constructor Summary Page

DeadFeatureException() 26

Constructor Detail

DeadFeatureException

public DeadFeatureException()

file:///l%22b11
file:///l%22b3

Class Feature

Class Feature

ej.kf

java.lang.Object

 ej.kf.Module

 ej.kf.Feature

public class Feature
extends Module

A Feature represents an optional part of an application that adds new features and services.

A Feature only depends on Kernel code. A Feature is considered as unreliable code from Kernel point of view.

Instances of this class are owned by the Kernel.

Nested Class Summary Page

static enumFeature.State

A Feature state.
30

Method Summary Page

Thread[]getAllAliveThreads()

Gets a snapshot of all alive threads owned by this Feature (some threads included in the
returned array may have been terminated when this method returns, some new threads may have
been created when this method returns).

27

Feature.Sta
te
getState()

Returns the current Feature state.
28

voidstart()

Causes this Feature to start.
28

voidstop()

Causes this Feature to stop.
28

Methods inherited from class ej.kf.Module

getExecutionCounter, getExecutionQuota, getName, getProvider, getUID, getVersion,
setExecutionQuota

Method Detail

getAllAliveThreads

public Thread[] getAllAliveThreads()

Gets a snapshot of all alive threads owned by this Feature (some threads included in the returned array
may have been terminated when this method returns, some new threads may have been created when this
method returns).

Returns:
the threads owned by this Feature

file:///l%22b71
file:///l%22b69
file:///l%22b70
file:///l%22b68
file:///l%22b67
file:///l%22b72
file:///l%22b73
file:///l%22b74
file:///l%22b16
file:///l%22b15
file:///l%22b14
file:///l%22b24
file:///l%22b24
file:///l%22b13
file:///l%22b24
file:///l%22b74
file:///l%22b74
file:///l%22b3

Class Feature

Throws:
IllegalStateException - if the Feature is not in the Feature.State.STARTED state

getState
public Feature.State getState()

Returns the current Feature state.

Returns:
this Feature's state.

See Also:
Feature.State

start
public void start()

Causes this Feature to start. A new thread owned by the Feature is created and started. The Feature is
switched in the Feature.State.STARTED state and this method returns. Next steps are executed
asynchronously within the new thread context:

 Feature clinits are executed
 Entry point is instantiated
 FeatureEntryPoint.start() is called

Throws:
IllegalStateException - if the Feature state is not in Feature.State.INSTALLED state

stop
public void stop()

Causes this Feature to stop. The following steps are executed:

 A new thread owned by the Feature is created and FeatureEntryPoint.stop() is executed.
 Wait until this thread is normally terminated or timeout occurred.
 ej.lang.Resource.reclaim() is called for each resource that remains open by the Feature.
 A DeadFeatureException is thrown in threads that are running Feature code or in threads that

want to call Feature code.
 Wait until all threads owned by this Feature are terminated.
 Feature state is set to Feature.State.STOPPED.
 Objects owned by the Feature are reclaimed. If there are no remaining alive objects, the Feature

state is set to Feature.State.INSTALLED.

When the new Feature state is Feature.State.INSTALLED, the Feature runtime has been fully reclaimed
(threads and objects). Otherwise, the new Feature state is Feature.State.STOPPED and there are some
remaining Feature objects references from Kernel.

This method can be called multiple times by the Kernel to reclaim objects again and thus to try to switch the
Feature in the Feature.State.INSTALLED state.

When Feature state is set to Feature.State.STOPPED, Kernel application shall remove all its references to
objects owned by this Feature, through the calls of FeatureStateListener.stateChanged(Feature,
State).

file:///l%22b29
file:///l%22b29
file:///l%22b20
file:///l%22b18
file:///l%22b20
file:///l%22b18
file:///l%22b18
file:///l%22b20
file:///l%22b12
file:///l%22b26
file:///l%22b18
file:///l%22b25
file:///l%22b19
file:///l%22b24
file:///l%22b24
file:///l%22b19

Class Feature

Throws:
IllegalStateException - if the Feature is in the Feature.State.INSTALLED or
Feature.State.UNINSTALLED state

file:///l%22b21
file:///l%22b18

Enum Feature.State

Enum Feature.State

ej.kf

java.lang.Object

 java.lang.Enum<Feature.State>

 ej.kf.Feature.State

All Implemented Interfaces:
Comparable<Feature.State>, Serializable

Enclosing class:
Feature

public static enum Feature.State
extends Enum<Feature.State>

A Feature state.

See Also:
Feature.getState()

Enum Constant Summary Page

INSTALLED

A Feature in the INSTALLED state has been successfully linked to the Kernel and is not running.
30

STARTED

A Feature in the STARTED state has been started and is running.
31

STOPPED

A Feature in the STOPPED state has been stopped and all its threads are terminated.
31

UNINSTALLED

A Feature in the UNINSTALLED state has been unlinked from the Kernel.
31

Method Summary Page

static
Feature.Sta

te

valueOf(String name)
31

static
Feature.Sta

te[]

values()
31

Enum Constant Detail

INSTALLED

public static final Feature.State INSTALLED

A Feature in the INSTALLED state has been successfully linked to the Kernel and is not running. There are
no references from the Kernel to objects owned by this Feature.

file:///l%22b18
file:///l%22b24
file:///l%22b22
file:///l%22b24
file:///l%22b24
file:///l%22b23
file:///l%22b24
file:///l%22b24
file:///l%22b21
file:///l%22b21
file:///l%22b20
file:///l%22b20
file:///l%22b19
file:///l%22b19
file:///l%22b18
file:///l%22b18
file:///l%22b14
file:///l%22b24
file:///l%22b17
file:///l%22b24
file:///l%22b24
file:///l%22b3

Enum Feature.State

STARTED
public static final Feature.State STARTED

A Feature in the STARTED state has been started and is running.

STOPPED
public static final Feature.State STOPPED

A Feature in the STOPPED state has been stopped and all its threads are terminated. There are remaining
references from the Kernel to objects owned by this Feature.

UNINSTALLED
public static final Feature.State UNINSTALLED

A Feature in the UNINSTALLED state has been unlinked from the Kernel. All Feature methods except
Feature.getState() throw an IllegalStateException

Method Detail

values

public static Feature.State[] values()

valueOf
public static Feature.State valueOf(String name)

file:///l%22b24
file:///l%22b24
file:///l%22b14
file:///l%22b21
file:///l%22b24
file:///l%22b20
file:///l%22b24
file:///l%22b19
file:///l%22b24

Interface FeatureEntryPoint

Interface FeatureEntryPoint

ej.kf

public interface FeatureEntryPoint

Each Feature shall define one entry point that implements this interface. Methods are called by the Kernel.

Method Summary Page

voidstart()

This method is called once by the Kernel when a Feature has been newly started.
32

voidstop()

This method is called once by the Kernel when a Feature is going to be unloaded.
32

Method Detail

start

void start()

This method is called once by the Kernel when a Feature has been newly started. It is executed in a
dedicated thread owned by the Feature, so it may consider it as its "main" thread. This allows a Feature to
connect to the application (by adding new Feature points, services, ...)

stop
void stop()

This method is called once by the Kernel when a Feature is going to be unloaded. It is executed in a
dedicated thread owned by the Feature. Feature is responsible to do its best effort to properly stop threads
and close resources it has created as soon as possible.

file:///l%22b26
file:///l%22b25
file:///l%22b3

Interface FeatureStateListener

Interface FeatureStateListener

ej.kf

public interface FeatureStateListener

The listener interface for receiving notifications when the state of a Feature has changed. Object instances of
classes that implement this interface must be added to the Kernel listener list using
Kernel.addFeatureStateListener(FeatureStateListener)

Method Summary Page

voidstateChanged(Feature feature, Feature.State previousState)

Called when the state of a Feature has changed.
33

Method Detail

stateChanged

void stateChanged(Feature feature,
 Feature.State previousState)

Called when the state of a Feature has changed.

Parameters:
feature - the Feature which state has changed
previousState - the previous state, null if Feature state is Feature.State.INSTALLED

file:///l%22b18
file:///l%22b24
file:///l%22b17
file:///l%22b24
file:///l%22b17
file:///l%22b28
file:///l%22b48
file:///l%22b3

Class IncompatibleFeatureException

Class IncompatibleFeatureException

ej.kf

java.lang.Object

 java.lang.Throwable

 java.lang.Exception

 ej.kf.IncompatibleFeatureException

All Implemented Interfaces:
Serializable

public class IncompatibleFeatureException
extends Exception

This exception is thrown if a Feature being loaded is not compatible with the current Kernel.

See Also:
Kernel.load(java.io.InputStream)

Constructor Summary Page

IncompatibleFeatureException() 34

Method Summary Page

StringgetExpectedKernelVersion()

Get the expected version of the Kernel on which this Feature can be installed
34

Constructor Detail

IncompatibleFeatureException

public IncompatibleFeatureException()

Method Detail

getExpectedKernelVersion

public String getExpectedKernelVersion()

Get the expected version of the Kernel on which this Feature can be installed

Returns:
the expected Kernel version

See Also:
Module.getVersion()

file:///l%22b69
file:///l%22b31
file:///l%22b30
file:///l%22b36
file:///l%22b3

Class InvalidFormatException

Class InvalidFormatException

ej.kf

java.lang.Object

 java.lang.Throwable

 java.lang.Exception

 ej.kf.InvalidFormatException

All Implemented Interfaces:
Serializable

public class InvalidFormatException
extends Exception

This exception is thrown when a Feature data being loaded has an invalid format.

See Also:
Kernel.load(java.io.InputStream)

Constructor Summary Page

InvalidFormatException() 35

Constructor Detail

InvalidFormatException

public InvalidFormatException()

file:///l%22b33
file:///l%22b36
file:///l%22b3

Class Kernel

Class Kernel

ej.kf

java.lang.Object

 ej.kf.Module

 ej.kf.Kernel

public class Kernel
extends Module

The Kernel represents the atomic part of an application. Kernel code is assumed to be reliable. The Kernel class
provides core methods to manage Features. It is intended to be used only by the Kernel code, and not viewed from
the Feature.

Method Summary Page

static voidaddConverter(Converter<?> converter)

Adds the Converter to the list of converters.
42

static voidaddFeatureStateListener(FeatureStateListener listener)

Adds the FeatureStateListener to the list of listeners that are notified when the state of a
Feature has changed.

41

static
boolean

areEquivalentSharedInterfaces(Class<?> si1, Class<?> si2)

Tells whether the given classes are equivalent shared interfaces. 44

static <T>
T
bind(T o, Class<T> targetType, Feature targetOwner)

Binds an Object owned by a Feature to an other Feature. 42

static <T>
T
clone(T from, Module toOwner)

Creates and returns a copy of the given object, so that the newly created object is owned by
the given Module.

41

static voidenter()

Enters in Kernel mode: the current thread context is switched to be owned by the Kernel.
39

static voidexit()

Exits from Kernel mode: the current thread context is restored to the owner of the caller of
the method (which can remain the Kernel).

39

static
FeatureStat
eListener[]

getAllFeatureStateListeners()

Returns an array containing all the FeatureStateListener that are notified when the state
of a Feature has changed.

41

static
Feature[]

getAllLoadedFeatures()

Returns the set of Features currently loaded.
39

static
Module

getContextOwner()

Returns the owner of the current thread context.
40

static
Class<?>

getEquivalentSharedInterface(Class<?> si, Feature target)

Gets the equivalent shared interface in the given target Feature. 44

file:///l%22b17
file:///l%22b62
file:///l%22b45
file:///l%22b74
file:///l%22b40
file:///l%22b17
file:///l%22b29
file:///l%22b50
file:///l%22b29
file:///l%22b29
file:///l%22b42
file:///l%22b41
file:///l%22b74
file:///l%22b74
file:///l%22b52
file:///l%22b17
file:///l%22b56
file:///l%22b63
file:///l%22b29
file:///l%22b29
file:///l%22b48
file:///l%22b10
file:///l%22b10
file:///l%22b54
file:///l%22b65
file:///l%22b74
file:///l%22b74
file:///l%22b3

Class Kernel

static
Class<?>

getImplementedSharedInterface(Class<?> fromClass, Class<?> topInterface)

Gets the first shared interface implemented by the given class under the hierarchy of
topInterface.

44

static
Kernel

getInstance()

Returns the singleton instance representing the Kernel.
37

StringgetName()

Gets the name of this module.
40

static
Module

getOwner(Object o)

Returns the owner of the given Object.
40

static
Class<?>

getSharedInterface(Class<?> si, Class<?> topInterface, Feature target)

From a shared interface, gets the closest shared interface in the given target Feature. 43

static
Feature

install(InputStream is)

Installs a Feature from an InputStream.
38

static
boolean

isAPI(Class<?> c)

Tells whether the given class is a Kernel API.
43

static
boolean

isInKernelMode()

Tells whether the current thread context is currently in Kernel mode.
40

static
boolean

isSharedInterface(Class<?> c)

Tells whether the given class is a shared interface (i.e.
43

static
Feature

load(InputStream is)

Installs a Feature from an InputStream and starts it.
38

static <T>
Proxy<T>

newProxy(T ref, Module owner)

Allocates a new Proxy and sets its reference to the given object.
43

static voidremoveConverter(Converter<?> converter)

Removes the Converter to the list of converters.
42

static voidremoveFeatureStateListener(FeatureStateListener listener)

Removes the FeatureStateListener to the list of listeners that are notified when the state
of a Feature has changed.

41

static voidrunUnderContext(Module contextOwner, Runnable runnable)

Calls the Runnable.run() method with current context set to the given Module.
41

static voidsetUncaughtExceptionHandler(UncaughtExceptionHandler handler)

Deprecated. Use
Thread.setUncaughtExceptionHandler(java.lang.Thread.UncaughtExceptionHandler)

40

static voiduninstall(Feature f)

Uninstalls a Feature.
38

static
boolean

unload(Feature f)

Stops a Feature and uninstalls it if its state is Feature.State.INSTALLED after
Feature.stop().

39

Methods inherited from class ej.kf.Module

getExecutionCounter, getExecutionQuota, getProvider, getUID, getVersion, setExecutionQuota

Method Detail

getInstance

public static Kernel getInstance()

file:///l%22b65
file:///l%22b71
file:///l%22b69
file:///l%22b70
file:///l%22b68
file:///l%22b72
file:///l%22b73
file:///l%22b74
file:///l%22b16
file:///l%22b18
file:///l%22b17
file:///l%22b39
file:///l%22b17
file:///l%22b38
file:///l%22b99
file:///l%22b46
file:///l%22b74
file:///l%22b74
file:///l%22b51
file:///l%22b29
file:///l%22b29
file:///l%22b49
file:///l%22b10
file:///l%22b10
file:///l%22b55
file:///l%22b97
file:///l%22b74
file:///l%22b59
file:///l%22b97
file:///l%22b36
file:///l%22b17
file:///l%22b58
file:///l%22b43
file:///l%22b60
file:///l%22b37
file:///l%22b17
file:///l%22b17
file:///l%22b61
file:///l%22b44
file:///l%22b74
file:///l%22b47
file:///l%22b35
file:///l%22b65
file:///l%22b64

Class Kernel

Returns the singleton instance representing the Kernel.

Returns:
the singleton instance representing the Kernel

load
public static Feature load(InputStream is)
 throws IOException,
 InvalidFormatException,
 IncompatibleFeatureException,
 AlreadyLoadedFeatureException

Installs a Feature from an InputStream and starts it.

Parameters:
is - the input stream from where the Feature data is loaded.

Returns:
the loaded Feature, in the Feature.State.STARTED state.

Throws:
IOException - if something occurs when reading InputStream
InvalidFormatException - if Feature content is invalid
IncompatibleFeatureException - if Feature is not compatible with the current Kernel
AlreadyLoadedFeatureException - if Feature is already loaded

See Also:
install(InputStream), Feature.start()

install
public static Feature install(InputStream is)
 throws IOException,
 InvalidFormatException,
 IncompatibleFeatureException,
 AlreadyLoadedFeatureException

Installs a Feature from an InputStream. Feature shall have been generated against the current Kernel
classes. Feature data is read and linked to the Kernel. The Feature is added to the list of loaded features
and its state is set to Feature.State.INSTALLED. The given input stream is let open.

Parameters:
is - the input stream from where the Feature data is loaded.

Returns:
the loaded Feature, in the Feature.State.INSTALLED state.

Throws:
IOException - if something occurs when reading InputStream
InvalidFormatException - if Feature content is invalid
IncompatibleFeatureException - if Feature is not compatible with the current Kernel
AlreadyLoadedFeatureException - if Feature is already loaded

See Also:
getAllLoadedFeatures()

uninstall
public static void uninstall(Feature f)

Uninstalls a Feature. When this method returns, the Feature code has been unlinked from the Kernel and
reclaimed. The Feature is removed from the list of loaded features and its state is set to
Feature.State.UNINSTALLED.

file:///l%22b21
file:///l%22b17
file:///l%22b40
file:///l%22b6
file:///l%22b32
file:///l%22b34
file:///l%22b18
file:///l%22b18
file:///l%22b6
file:///l%22b32
file:///l%22b34
file:///l%22b17
file:///l%22b15
file:///l%22b37
file:///l%22b6
file:///l%22b32
file:///l%22b34
file:///l%22b19
file:///l%22b6
file:///l%22b32
file:///l%22b34
file:///l%22b17

Class Kernel

Parameters:
f - the feature to be uninstalled.

Throws:
IllegalStateException - if Feature state is not Feature.State.INSTALLED

See Also:
getAllLoadedFeatures()

unload
public static boolean unload(Feature f)
 throws UnknownFeatureException

Stops a Feature and uninstalls it if its state is Feature.State.INSTALLED after Feature.stop().

Parameters:
f - the feature to be unloaded.

Returns:
true if Feature state is Feature.State.UNINSTALLED, false otherwise.

Throws:
UnknownFeatureException - if the given Feature is unknown.
IllegalStateException - if Feature state is Feature.State.UNINSTALLED

See Also:
uninstall(Feature), Feature.stop()

getAllLoadedFeatures
public static Feature[] getAllLoadedFeatures()

Returns the set of Features currently loaded.

Returns:
all Features that are not in the state Feature.State.UNINSTALLED.

enter
public static void enter()

Enters in Kernel mode: the current thread context is switched to be owned by the Kernel. If the current
context was already in Kernel mode, this method does nothing.

The context owner is automatically restored when returning from the method (equivalent to calling exit()
before returning).

See Also:
exit()

exit
public static void exit()

Exits from Kernel mode: the current thread context is restored to the owner of the caller of the method
(which can remain the Kernel). If the restored context is owned by a Feature, all locals that refer to an
object owned by an other Feature are reset to null.

See Also:
enter()

file:///l%22b41
file:///l%22b42
file:///l%22b42
file:///l%22b21
file:///l%22b17
file:///l%22b16
file:///l%22b38
file:///l%22b21
file:///l%22b101
file:///l%22b21
file:///l%22b16
file:///l%22b18
file:///l%22b101
file:///l%22b17
file:///l%22b40
file:///l%22b18

Class Kernel

isInKernelMode
public static boolean isInKernelMode()

Tells whether the current thread context is currently in Kernel mode.

Returns:
the result of Kernel.getContextOwner() == Kernel.getInstance()

getOwner
public static Module getOwner(Object o)

Returns the owner of the given Object.

Parameters:
o - the object.

Returns:
the owner of the object.

getContextOwner
public static Module getContextOwner()

Returns the owner of the current thread context.

Returns:
the context owner.

setUncaughtExceptionHandler
@Deprecated
public static void setUncaughtExceptionHandler(UncaughtExceptionHandler handler)

Deprecated. Use
Thread.setUncaughtExceptionHandler(java.lang.Thread.UncaughtExceptionHandler)

Sets the handler invoked when a Feature thread abruptly terminates due to an uncaught exception.

Parameters:
handler - the handler to register, or null if no explicit handler.

getName
public String getName()

Gets the name of this module.

Overrides:
getName in class Module

Returns:
the name of this module, or "KERNEL" String if not set

file:///l%22b74
file:///l%22b67
file:///l%22b99
file:///l%22b74
file:///l%22b74

Class Kernel

addFeatureStateListener
public static void addFeatureStateListener(FeatureStateListener listener)

Adds the FeatureStateListener to the list of listeners that are notified when the state of a Feature has
changed.

Parameters:
listener - the new listener to add

Throws:
NullPointerException - if listener is null

removeFeatureStateListener
public static void removeFeatureStateListener(FeatureStateListener listener)

Removes the FeatureStateListener to the list of listeners that are notified when the state of a Feature
has changed.

Does nothing if the listener is not registered or null.

Parameters:
listener - the listener to be removed

getAllFeatureStateListeners
public static FeatureStateListener[] getAllFeatureStateListeners()

Returns an array containing all the FeatureStateListener that are notified when the state of a Feature
has changed.

Returns:
an array of FeatureStateListener[] with all the listeners

runUnderContext
public static void runUnderContext(Module contextOwner,
 Runnable runnable)

Calls the Runnable.run() method with current context set to the given Module.

Parameters:
contextOwner - the context owner that will execute the method
runnable - the Runnable instance to run under the given Feature context.

Throws:
IllegalAccessError - if the Runnable instance is not accessible to the context owner, or if the
Runnable is owned by a Feature and must run in Kernel context.

clone
public static <T> T clone(T from,
 Module toOwner)
 throws CloneNotSupportedException

Creates and returns a copy of the given object, so that the newly created object is owned by the given
Module. The source object class must be String or must implement Cloneable. Otherwise, a

file:///l%22b74
file:///l%22b74
file:///l%22b17
file:///l%22b74
file:///l%22b74
file:///l%22b29
file:///l%22b29
file:///l%22b29
file:///l%22b29
file:///l%22b29
file:///l%22b29

Class Kernel

CloneNotSupportedException is thrown. If the source object owner and the target owner are the same,
this method is equivalent to Object.clone() method applied on the source object. Otherwise, the object
can be cloned if the source object class is owned by the Kernel and all its object references are accessible
to the new owner. In all other cases, an IllegalAccessError is thrown.

Type Parameters:
T - the Kernel type of the object to clone

Parameters:
from - the object to clone
toOwner - the owner of the cloned object

Returns:
the cloned object

Throws:
CloneNotSupportedException - if the source object cannot be cloned
IllegalAccessError - if the creation of the new object would break access rules
NullPointerException - if one of the arguments is null

addConverter
public static void addConverter(Converter<?> converter)

Adds the Converter to the list of converters. Registered converters are used by bind(Object, Class,
Feature).

Parameters:
converter - the new converter to add

Throws:
NullPointerException - if converter is null
IllegalArgumentException - if a converter managing the same type is already registered

See Also:
Converter.getType()

removeConverter
public static void removeConverter(Converter<?> converter)

Removes the Converter to the list of converters.

Does nothing if the converter is not registered or null.

Parameters:
converter - the converter to be removed

bind
public static <T> T bind(T o,
 Class<T> targetType,
 Feature targetOwner)

Binds an Object owned by a Feature to an other Feature.

When the target type is owned by the Kernel, the object is converted using the most accurate registered
converter.

When the target type is owned by the Feature, it must be a shared interface. In this case, a Proxy instance
is returned. Object identity is preserved across Features: calling multiple times this method with the same
parameters returns the same object.

file:///l%22b97
file:///l%22b17
file:///l%22b10
file:///l%22b10
file:///l%22b9
file:///l%22b56
file:///l%22b56
file:///l%22b10
file:///l%22b10

Class Kernel

Type Parameters:
T - the Kernel type of the object to bind

Parameters:
o - the object to be converted
targetType - the type of the converted object
targetOwner - the owner of the converted object

Returns:
an object owned by the target owner, or null if o is null or is a Proxy that refers to a dead object

Throws:
IllegalAccessError - if the given object cannot be bounded to the given type
IllegalArgumentException - if the given type is not a shared interface

isSharedInterface
public static boolean isSharedInterface(Class<?> c)

Tells whether the given class is a shared interface (i.e. an interface owned by a Feature and defined as
shared).

Parameters:
c - the class to test

Returns:
true if the class is a shared interface, false otherwise

newProxy
public static <T> Proxy<T> newProxy(T ref,
 Module owner)

Allocates a new Proxy and sets its reference to the given object.

Parameters:
ref - the Proxy reference
owner - the owner of the Proxy instance

Returns:
the new Proxy instance initialized with the given reference

isAPI
public static boolean isAPI(Class<?> c)

Tells whether the given class is a Kernel API.

Parameters:
c - the class to test

Returns:
true if the class is a Kernel API, false otherwise

getSharedInterface
public static Class<?> getSharedInterface(Class<?> si,
 Class<?> topInterface,
 Feature target)

From a shared interface, gets the closest shared interface in the given target Feature.

file:///l%22b17
file:///l%22b97
file:///l%22b97
file:///l%22b97
file:///l%22b97
file:///l%22b74
file:///l%22b97
file:///l%22b97

Class Kernel

The closest shared interface is computed by returning the first equivalent shared interface in the target
Feature, starting from the interface si to the interface topInterface (included).

If the owner of the given shared interface is the target, the same shared interface is returned.

Parameters:
si - a shared interface that extends topInterface interface
topInterface - a shared interface or an interface owned by the Kernel, which is assignable from
si.
target - the target Feature where to find the closest equivalent shared interface of si

Returns:
the closest shared interface as described, null if not found.

Throws:
IllegalArgumentException - if si is not a shared interface or if topInterface is not an interface
or if topInterface is not assignable from fromClass

See Also:
getEquivalentSharedInterface(Class, Feature)

getEquivalentSharedInterface
public static Class<?> getEquivalentSharedInterface(Class<?> si,
 Feature target)

Gets the equivalent shared interface in the given target Feature.

The equivalent shared interface is the interface owned by the target Feature such as
areEquivalentSharedInterfaces(Class, Class) is true.

Parameters:
si - a shared interface
target - the target Feature where to find the equivalent shared interface of si

Returns:
the equivalent shared interface, null if not found

Throws:
IllegalArgumentException - if si is not a shared interface

areEquivalentSharedInterfaces
public static boolean areEquivalentSharedInterfaces(Class<?> si1,
 Class<?> si2)

Tells whether the given classes are equivalent shared interfaces.

Two classes are equivalent shared interfaces if they are share interfaces and have the same fully qualified
name.

Parameters:
si1 - a class to test
si2 - a class to test

Returns:
true if the given classes are equivalent shared interfaces, false otherwise

getImplementedSharedInterface
public static Class<?> getImplementedSharedInterface(Class<?> fromClass,
 Class<?> topInterface)

Gets the first shared interface implemented by the given class under the hierarchy of topInterface.

file:///l%22b63
file:///l%22b17
file:///l%22b62

Class Kernel

If fromClass is a shared interface it is directly returned.

Parameters:
fromClass - a class or an interface owned by a Feature that implements topInterface
topInterface - an interface implemented by fromClass

Returns:
the shared interface type as described or null if no shared interface found

Throws:
IllegalArgumentException - if the given class is an array or is owned by the Kernel or if
topInterface is not an interface or if topInterface is not assignable from fromClass

file:///l%22b17

Class Module

Class Module

ej.kf

java.lang.Object

 ej.kf.Module

Direct Known Subclasses:
Feature, Kernel

public class Module
extends Object

A Module is either Kernel or a Feature. It owns a set of classes, objects, threads and stack contexts.

Constructor Summary Page

Module() 46

Method Summary Page

longgetExecutionCounter()

Gets the current execution counter, since the last reset.
48

intgetExecutionQuota()

Gets the execution quota.
48

StringgetName()

Gets the name of this module.
46

PrincipalgetProvider()

Gets the identification of this module provider.
47

byte[]getUID()

Gets a byte sequence that uniquely identifies the current module.
47

StringgetVersion()

Gets a String that represents this module version.
47

voidsetExecutionQuota(int quota)

Sets the execution quota allocated to the threads owned by this Module.
47

Constructor Detail

Module

public Module()

Method Detail

getName

public String getName()

Gets the name of this module.

file:///l%22b74
file:///l%22b71
file:///l%22b69
file:///l%22b70
file:///l%22b68
file:///l%22b83
file:///l%22b67
file:///l%22b72
file:///l%22b73
file:///l%22b66
file:///l%22b74
file:///l%22b65
file:///l%22b17
file:///l%22b3

Class Module

Returns:
the internal name

getProvider
public Principal getProvider()

Gets the identification of this module provider.

Returns:
the module identification.

getVersion
public String getVersion()

Gets a String that represents this module version.

Returns:
the module version

See Also:
IncompatibleFeatureException.getExpectedKernelVersion()

getUID
public byte[] getUID()

Gets a byte sequence that uniquely identifies the current module.

Returns:
this module UID

setExecutionQuota
public void setExecutionQuota(int quota)

Sets the execution quota allocated to the threads owned by this Module. This quota is expressed in
execution units.

A Thread owned by a Module which execution quota set to 0 will never be scheduled.

A Thread owned by a Module which execution quota set to -1 is always eligible to scheduling.

Calling this method induces a global reset of the quantum of all the Modules.

A Module is created with an execution quota set to -1. When the quota of all Module is set to -1, the
execution counting is disabled. When the quota of a Module is set to a value other than -1, the execution
counting is enabled.

Parameters:
quota - the execution quota to set to this Module in execution units

Throws:
IllegalArgumentException - if the given quota is lower than -1.

file:///l%22b74
file:///l%22b74
file:///l%22b74
file:///l%22b74
file:///l%22b74
file:///l%22b74
file:///l%22b74
file:///l%22b31
file:///l%22b83

Class Module

getExecutionQuota
public int getExecutionQuota()

Gets the execution quota.

Returns:
the quota of this Module in execution units.

getExecutionCounter
public long getExecutionCounter()

Gets the current execution counter, since the last reset. The execution counters are reset each time
setExecutionQuota(int) is called on a Module.

Returns:
the total amount of execution units that has been consumed by threads owned by this Module, or 0
if execution counting is disabled.

file:///l%22b74
file:///l%22b74
file:///l%22b71
file:///l%22b74

Interface Principal

Interface Principal

ej.kf

public interface Principal

This interface represents and identifies the Kernel or a Feature. Identification uses the 6 well-known fields defined in
RFC 2253.

 CN commonName
 L localityName
 ST stateOrProvinceName
 O organizationName
 OU organizationalUnitName
 C countryName

Field Summary Page

intFIELD_C

C: Country
50

intFIELD_CN

CN: Common name
49

intFIELD_L

L: Locality
49

intFIELD_O

O: Organization
50

intFIELD_OU

OU: Organizational Unit
50

intFIELD_ST

ST: State or Province
50

Method Summary Page

StringgetValue(int field)

Gets the value of one of the fields.
50

StringtoString()

Gets a string representation of the X.500 distinguished name using the format defined in
RFC 2253.

50

Field Detail

FIELD_CN

public static final int FIELD_CN

CN: Common name

FIELD_L
public static final int FIELD_L

file:///l%22b82
file:///l%22b81
file:///l%22b77
file:///l%22b79
file:///l%22b78
file:///l%22b76
file:///l%22b75
file:///l%22b80
file:///l%22b3

Interface Principal

L: Locality

FIELD_ST
public static final int FIELD_ST

ST: State or Province

FIELD_O
public static final int FIELD_O

O: Organization

FIELD_OU
public static final int FIELD_OU

OU: Organizational Unit

FIELD_C
public static final int FIELD_C

C: Country

Method Detail

getValue

String getValue(int field)

Gets the value of one of the fields.

Parameters:
field - One of the 6 well-known fields.

Returns:
the value of the required field.

Throws:
IndexOutOfBoundsException - if field is out of bounds.

toString
String toString()

Gets a string representation of the X.500 distinguished name using the format defined in RFC 2253.

Overrides:
toString in class Object

Class Proxy<T>

Class Proxy<T>

ej.kf

java.lang.Object

 ej.kf.Proxy<T>

Type Parameters:
T - the type managed by this Proxy

public class Proxy<T>
extends Object

The superclass of proxy classes. A proxy class is a class that directly extends this class and directly implements a
shared interface. Each method of the implemented interface must be defined according to the following pattern:

 public class MyProxy extends Proxy implements MySharedInterface{
 public void foo(){
 try{
 invoke();
 }
 catch(Throwable e){
 // return or throw default case (deny of service)
 }
 }

A Proxy instance has a link to a reference owned by an other Feature. The reference may be automatically
removed by the garbage collector.

Constructor Summary Page

Proxy()

The default constructor.
52

Method Summary Page

TgetReference()

Returns the reference managed by this Proxy.
54

protected
void

invoke()

This method has for effect to invoke the same method on the reference.
52

protected
boolean

invokeBoolean()

This method has for effect to invoke the same method on the reference.
52

protected
byte

invokeByte()

This method has for effect to invoke the same method on the reference.
52

protected
char

invokeChar()

This method has for effect to invoke the same method on the reference.
53

protected
double

invokeDouble()

This method has for effect to invoke the same method on the reference.
54

protected
float

invokeFloat()

This method has for effect to invoke the same method on the reference.
53

protected
int

invokeInt()

This method has for effect to invoke the same method on the reference.
53

protected
long

invokeLong()

This method has for effect to invoke the same method on the reference.
53

file:///l%22b92
file:///l%22b91
file:///l%22b93
file:///l%22b94
file:///l%22b89
file:///l%22b88
file:///l%22b87
file:///l%22b86
file:///l%22b97
file:///l%22b96
file:///l%22b84
file:///l%22b85
file:///l%22b17
file:///l%22b97
file:///l%22b97
file:///l%22b3

Class Proxy<T>

protected
Object

invokeRef()

This method has for effect to invoke the same method on the reference.
54

protected
short

invokeShort()

This method has for effect to invoke the same method on the reference.
53

Constructor Detail

Proxy

public Proxy()

The default constructor.

Method Detail

invoke

protected final native void invoke()
 throws Throwable

This method has for effect to invoke the same method on the reference. Each argument of the current
method is converted and passed to the underlying method.

Throws:
Throwable - any kind of exceptions must be catched by the caller

invokeBoolean
protected final native boolean invokeBoolean()
 throws Throwable

This method has for effect to invoke the same method on the reference. Each argument of the current
method is converted and passed to the underlying method.

Returns:
the boolean result of the call of the target method

Throws:
Throwable - any kind of exceptions must be catched by the caller

invokeByte
protected final native byte invokeByte()
 throws Throwable

This method has for effect to invoke the same method on the reference. Each argument of the current
method is converted and passed to the underlying method.

Returns:
the byte result of the call of the target method

Throws:
Throwable - any kind of exceptions must be catched by the caller

file:///l%22b90
file:///l%22b95

Class Proxy<T>

invokeChar
protected final native char invokeChar()
 throws Throwable

This method has for effect to invoke the same method on the reference. Each argument of the current
method is converted and passed to the underlying method.

Returns:
the char result of the call of the target method

Throws:
Throwable - any kind of exceptions must be catched by the caller

invokeShort
protected final native short invokeShort()
 throws Throwable

This method has for effect to invoke the same method on the reference. Each argument of the current
method is converted and passed to the underlying method.

Returns:
the short result of the call of the target method

Throws:
Throwable - any kind of exceptions must be catched by the caller

invokeInt
protected final native int invokeInt()
 throws Throwable

This method has for effect to invoke the same method on the reference. Each argument of the current
method is converted and passed to the underlying method.

Returns:
the int result of the call of the target method

Throws:
Throwable - any kind of exceptions must be catched by the caller

invokeLong
protected final native long invokeLong()
 throws Throwable

This method has for effect to invoke the same method on the reference. Each argument of the current
method is converted and passed to the underlying method.

Returns:
the long result of the call of the target method

Throws:
Throwable - any kind of exceptions must be catched by the caller

invokeFloat
protected final native float invokeFloat()
 throws Throwable

Class Proxy<T>

This method has for effect to invoke the same method on the reference. Each argument of the current
method is converted and passed to the underlying method.

Returns:
the float result of the call of the target method

Throws:
Throwable - any kind of exceptions must be catched by the caller

invokeDouble
protected final native double invokeDouble()
 throws Throwable

This method has for effect to invoke the same method on the reference. Each argument of the current
method is converted and passed to the underlying method.

Returns:
the double result of the call of the target method

Throws:
Throwable - any kind of exceptions must be catched by the caller

invokeRef
protected final native Object invokeRef()
 throws Throwable

This method has for effect to invoke the same method on the reference. Each argument of the current
method is converted and passed to the underlying method.

Returns:
the Object result of the call of the target method

Throws:
Throwable - any kind of exceptions must be catched by the caller

getReference
public T getReference()

Returns the reference managed by this Proxy.

Returns:
the reference or null if the reference has been reclaimed.

file:///l%22b97
file:///l%22b84

Interface UncaughtExceptionHandler

Interface UncaughtExceptionHandler

ej.kf

public interface UncaughtExceptionHandler

Deprecated. Use

Handler for uncaught exceptions thrown in a Feature.

Method Summary Page

voiduncaughtException(Feature f, Thread t, Throwable e) 55

Method Detail

uncaughtException

void uncaughtException(Feature f,
 Thread t,
 Throwable e)

file:///l%22b17
file:///l%22b17
file:///l%22b98
file:///l%22b3

Class UnknownFeatureException

Class UnknownFeatureException

ej.kf

java.lang.Object

 java.lang.Throwable

 java.lang.Exception

 ej.kf.UnknownFeatureException

All Implemented Interfaces:
Serializable

public class UnknownFeatureException
extends Exception

This exception is thrown if a Feature being unloaded is unknown.

See Also:
Kernel.unload(Feature)

Constructor Summary Page

UnknownFeatureException() 56

Constructor Detail

UnknownFeatureException

public UnknownFeatureException()

file:///l%22b100
file:///l%22b39
file:///l%22b3

	1 Preface to KF Profile, ESR020
	1.1 Who should use this specification?
	1.2 Comments
	1.3 Requirements
	1.4 Related Literature
	1.5 Document Conventions
	1.6 Implementation Notes

	2 Introduction
	2.1 Basic Concepts
	2.2 First Example
	2.2.1 Kernel class
	2.2.2 Feature class
	2.2.3 Expected Output

	3 Ownership Rules
	3.1 Type
	3.2 Object
	3.3 Execution Context
	3.4 Kernel Mode

	4 Execution Rules
	4.1 Type References
	4.2 Method References
	4.3 Field References
	4.3.1 Instance Field References
	4.3.2 Static Field References
	4.3.3 Context Local Static Field References

	4.4 Object References
	4.5 Local References
	4.6 Monitor Access
	4.7 Native Method Declaration
	4.8 Reflective Operations
	4.8.1 Class.forName
	4.8.2 Class.newInstance
	4.8.3 Class.getResourceAsStream
	4.8.4 Thread.currentThread

	5 Feature Lifecycle
	5.1 Entry point
	5.2 States
	5.3 Installation
	5.4 Start
	5.5 Stop
	5.6 Deinstallation

	6 Class Spaces
	6.1 Overview
	6.2 Private Types
	6.3 Kernel API Types
	6.4 Precedence Rules

	7 Resource Control Manager
	7.1 CPU Control: Quotas
	7.2 RAM Control: Feature Criticality
	7.3 Time-out Control: Watchdog
	7.4 Native Resource Control: Security Manager

	8 Communication Between Features
	8.1 Introduction
	8.2 Shared Interface Declaration
	8.3 Proxy Class
	8.4 Object Binding
	8.5 Arguments Transfer
	8.6 Kernel Type Converters

	9 Configuration Files
	9.1 Kernel and Features Declaration
	9.2 Kernel API Definition
	9.3 Identification
	9.4 Shared Interface Declaration
	9.5 Kernel Advanced Configuration
	9.6 Context Local Storage Static Field Configuration
	9.6.1 XML Schema & Format
	9.6.2 Typical Example

	10 Java Specification

